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Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a principal analytical technique in

metabolomics. Extracting metabolic information from NMR spectra is complex due to the

fact that an immense amount of detail on the chemical composition of a biological sample is

expressed through a single spectrum. The simplest approach to quantify the signal is

through spectral binning which involves subdividing the spectra into regions along the chem-

ical shift axis and integrating the peaks within each region. However, due to overlapping res-

onance signals, the integration values do not always correspond to the concentrations of

specific metabolites. An alternate, more advanced statistical approach is spectral deconvo-

lution. BATMAN (Bayesian AuTomated Metabolite Analyser for NMR data) performs spec-

tral deconvolution using prior information on the spectral signatures of metabolites. In this

way, BATMAN estimates relative metabolic concentrations. In this study, both spectral bin-

ning and spectral deconvolution using BATMAN were applied to 400 MHz and 900 MHz

NMR spectra of blood plasma samples from lung cancer patients and control subjects. The

relative concentrations estimated by BATMAN were compared with the binning integration

values in terms of their ability to discriminate between lung cancer patients and controls. For

the 400 MHz data, the spectral binning approach provided greater discriminatory power.

However, for the 900 MHz data, the relative metabolic concentrations obtained by using

BATMAN provided greater predictive power. While spectral binning is computationally

advantageous and less laborious, complementary models developed using BATMAN-

estimated features can add complementary information regarding the biological interpreta-

tion of the data and therefore are clinically useful.
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1 Introduction

Metabolomics characterizes the small molecule or metabolite composition of cells, tissues, or

biofluids (e.g., urine, cerebrospinal fluid, or blood plasma). Metabolites are the intermediates

or the end products of virtually all biological processes. Changes that occur in the genome,

transcriptome, or proteome are reflected in the metabolome. [1] As such, analyzing the meta-

bolic composition of biological samples has considerable potential for disease diagnosis. [2–4]

Metabolic profiling also provides information about patient heterogeneity that could play a

pivotal role in personalized medicine. [1]

In this study, the metabolic profile of blood plasma was analyzed. One dimensional (1D)

proton-nuclear magnetic resonance (1H-NMR) spectroscopy is one of the two most com-

monly used analytical techniques for measuring the metabolite composition of blood plasma.

The other analytical technique, mass spectrometry (MS), is more sensitive than 1H-NMR spec-

troscopy, but requires an extraction step to separate the hydrophilic from the hydrophobic

metabolites. 1H-NMR spectroscopy is a popular choice as it requires minimal sample prepara-

tion and because it is a quantitative and non-destructive (i.e., the biological sample remains

intact) technique.
1H-NMR spectroscopy exploits the magnetic properties of hydrogen nuclei; that is, in a

strong external magnetic field, a short radiofrequency (RF) pulse causes hydrogen nuclei to

absorb and subsequently emit electromagnetic (EM) radiation. The frequency of RF radiation

that is required to bring hydrogen nuclei into resonance (i.e., the frequency of absorbed and

re-emitted radiation), is called the resonance frequency (MHz) and it is influenced by the

strength of the magnetic field and the chemical environment of the hydrogen nuclei. Resonat-

ing hydrogen nuclei produce a NMR response which is called the free induction decay (FID).

The FID (time domain) is Fourier transformed to obtain a 1H-NMR spectrum (frequency

domain) that is visualized as a series of peaks along a chemical shift axis. The peaks correspond

to the resonating hydrogen nuclei. The unit of the chemical shift axis is parts per million

(ppm), that is, the difference between the resonance frequency of the hydrogen nucleus of the

metabolite and the hydrogen nucleus of a reference compound, divided by the resonance fre-

quency of the reference compound. Each metabolite in the biological sample produces a char-

acteristic spectral signature that is formed by a combination of peaks not necessarily adjacent

to each other along the chemical shift axis. Each signature appears with an area under the

intensity curve that is proportional to the concentration of the corresponding metabolite in

the sample.

The identification and quantification of blood plasma metabolites based on 1H-NMR spec-

tra is a challenge for the following reasons:

1. 1H-NMR spectrometers have detection limits. Although the number of significantly detect-

able peaks increases for higher magnetic field strengths, the number of existing plasma

metabolites that can be reliably detected and quantified remains rather small (approxi-

mately 40-50).

2. More than one metabolite can contribute to a signal at a specific location which further

complicates peak identification and metabolite quantification.

Typically, 1H-NMR metabolomics of blood plasma is conducted using spectrometers with

magnetic field strengths ranging from 9.4 Tesla to 14.1 Tesla, i.e., with proton resonance fre-

quencies ranging from 400 MHz to 600 MHz. Higher-field spectrometers (e.g., 900 MHz spec-

trometers) produce spectra with improved resolution. The ability to resolve peaks with

different chemical shifts increases with field strength. However, higher-field spectrometers are

also far more costly. [5]
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Spectral binning [6] is a simple and commonly used technique for extracting metabolic sig-

nal from NMR spectra. It involves subdividing the spectra into regions along the chemical

shift axis and computing the area under the curve within each integration region. The limits of

the integration regions are defined by spectroscopists in a way that best accommodates the

metabolite peaks of interest. However, peak overlap and variation in the chemical shift posi-

tions of the peaks across spectra often prevents a one-to-one mapping between integration

regions and metabolites. This may be especially problematic in the context of sample classifica-

tion. In particular, an integration region may fail to show potential for classification if it

includes metabolites which show opposite behavior (under- and over-expression) in patients

versus controls. For instance, assume an integration region encompasses signal coming from

two discriminative metabolites. On average, one metabolite has a higher concentration in

patients than in controls while the second metabolite has a lower concentration in patients

than in controls. Despite the fact that the integration region contains signal from two discrimi-

native metabolites, the opposite behavior of the two metabolites diminishes the classification

potential of the integration region, potentially resulting in a non-differential integrated spec-

tral region (ISR). On the other hand, for an integration region that shows classification poten-

tial it may be difficult to uniquely assign its effect to a single metabolite.

Since overlapping molecular resonances complicate the extraction of metabolic informa-

tion from 1H-NMR data, spectral deconvolution techniques are currently the state of the art.

BATMAN (Bayesian AuTomated Metabolite Analyser for NMR data) [7, 8] is a Bayesian

model for 1H-NMR spectral deconvolution which resolves resonance peaks to obtain relative

concentration estimates for a set of metabolites in an automated manner. It exploits extensive

prior information on the characteristic resonance signatures of each metabolite and combines

this information with the intensities observed in the actual spectrum to model the metabolic

signal. Other deconvolution models include Bayesil and the commercially available software

package Chenomx amongst others. [9, 10] The advantage of BATMAN is its flexibility and

adaptability to the problem at hand. The prior information on peak shape and relative inten-

sity plays an important role in any spectral deconvolution and signal extraction model. Flexi-

bility in setting up the prior information is desirable especially when 1H-NMR spectroscopy is

performed on a spectrometer different to the one used to create the software.

The spectra, the ISRs obtained through spectral binning, and the relative metabolite con-

centrations estimated by BATMAN are quantitative measures of the signal. However, the mea-

sures are normalized such that the values become relative to a normalization constant (e.g., the

total area under the curve of all integration regions).

In this article, the application of the widely used spectral binning approach is compared

with the automated spectral deconvolution technique, BATMAN, for extracting metabolic sig-

nal for the purposes of sample classification. The two approaches were applied to 400 MHz

(medium-field) and 900 MHz (high-field) 1H-NMR spectra of blood plasma samples from

lung cancer patients and control subjects. The extracted features, that is, the ISRs and the BAT-

MAN estimated relative concentrations of the metabolites, were compared in terms of their

ability to correctly classify lung cancer and control samples. This was performed separately for

the 400 MHz and 900 MHz spectra.

A series of pre-processing steps were required to reduce the noise, external sources of varia-

tion, and artifacts which result during the process of NMR data acquisition before the meta-

bolic signal could be extracted. Different pre-processing protocols were applied to the 400

MHz and 900 MHz 1H-NMR spectra. In particular, the use of a more automated approach for

pre-processing the 900 MHz 1H-NMR spectra was investigated.
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2 Materials and methods

2.1 Data

For this investigation, the previously analyzed [5], 1H-NMR spectra of blood plasma samples

obtained from lung cancer patients (ncases = 69), included in the Limburg Positron Emission

Tomography center (Hasselt, Belgium) from March 2011 to January 2012, and control subjects

(ncontrols = 74), attending Ziekenhuis Oost-Limburg (Genk, Belgium) between December 2011

and April 2012, were used. There was no drop-out. The following exclusion criteria were applied:

1. not fasted for at least 6 hours,

2. a fasting blood glucose concentration�200 mg/dl,

3. medication intake on the morning of blood sampling, and

4. treatment or history of cancer in the past 5 years.

The study was conducted in accordance with the ethical rules of the Helsinki Declaration

and Good Clinical Practice and was approved by the ethical committees of Ziekenhuis Oost-

Limburg (ZOL) and UHasselt. All study participants provided written informed consent.

Fasting venous blood samples were collected in 10 ml lithium-heparin tubes and stored at

4˚C within 5 to 10 minutes. Within 8 hours after blood collection, samples were centrifuged at

1600 g for 15 minutes, and plasma aliquots of 500 μl were transferred into sterile cryovials and

stored at −80˚C until NMR analysis within six months.

The 1H-NMR data were acquired by analyzing the blood plasma samples at 21.2˚C on a 400

MHz spectrometer (9.4 Tesla; 54 mm bore-size; Varian Inova; Agilent Technologies Inc.;

VnmrJ 3.2 RevisionA) and on a 900 MHz spectrometer (21.1 Tesla; 54 mm bore-size; Bruker

Avance; Bruker Biospin). The 400 MHz spectrometer is equipped with an Agilent OneNMR

5mm probe, whereas the 900 MHz spectrometer has a triple resonance cryoprobe. Slightly

T2-weighted spectra were acquired using the Carr-Purcell-Meiboom-Gill pulse sequence (total

spin-echo time of 32 ms; interpulse delay of 0.1 ms), preceded by an initial preparation delay

of 0.5 s, and 3 s for water suppression presaturation. Other parameters for acquiring the 400

MHz/900 MHz data, respectively were: a spectral width of 6000 Hz/14423 Hz, a 90˚ pulse

length of 6.35/9.15 μs, an acquisition time of 1.2 s, a preparation delay of 3.5 s, and 96/64 scans

(7min 44sec/5min 9sec on 400 MHz/900 MHz).

2.2 Spectral pre-processing

A manual pre-processing protocol was applied to the 400 MHz and the 900 MHz spectra. The

900 MHz spectra were also pre-processed using a more automated protocol.

2.2.1 Manual pre-processing. The 400 MHz spectra were pre-processed using the Var-

ian/Agilent software. The pre-processing steps included zero-filling and multiplication by an

exponential apodization function of 0.7 Hz prior to the Fourier transformation. The spectra

were manually phased, automatically baseline corrected using polynomials (or splines), and

referenced to trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) at 0.015 ppm. [4] The

final step of the spectral pre-processing was normalization by the total area under the curve,

without accounting for the water and TSP signal.

The 900 MHz Bruker files were first transformed to the Varian format for compatibility

with the Varian pre-processing software before being manually pre-processed in the same way

as the 400 MHz data.

2.2.2 Automated pre-processing. The 900 MHz spectra were also automatically pre-

processed using the R statistical software package PepsNMR [11]. PepsNMR was applied to
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the raw Bruker FIDs. Pre-processing included a first-order and zero-order phase correction,

solvent (i.e., water) suppression, apodization, zero-filling, Fourier transformation, baseline

correction, spectral alignment, and median normalization. The default PepsNMR settings

were utilized for all steps prior to the baseline correction. A more stringent penalty was

selected for the baseline correction in order to keep the number of spectral points with nega-

tive intensities to a minimum. That is, the PepsNMR baseline correction asymmetry parame-

ter was set to 0.01 (see Fig 1).

The chosen reference spectrum for spectral alignment was the spectrum that achieved the

smallest sum of squared differences between the reference spectrum and all other spectra after

warping. This corresponds to setting the reference choosing parameter of the PepsNMR warp-

ing function to after (see Fig 2 and Fig A in S1 File). Since we expect differences in the meta-

bolic profile between lung cancer patients and control subjects, warping was performed

separately for the two groups.

The main reason for applying two different pre-processing protocols to the 900 MHz spec-

tra was that the manual pre-processing of the 900 MHz spectra did not provide data of suffi-

cient quality to perform the BATMAN analysis (see Fig 3). It was necessary to use the raw FID

data to improve the manual baseline correction and to avoid numerous manual steps in phas-

ing. With PepsNMR, the pre-processing steps and parameter settings can be clearly defined

which improves the reproducibility of the analysis.

Fig 1. Illustration of a portion of a 900 MHz spectrum before (grey spectrum) and after (blue spectrum) baseline

correction.

https://doi.org/10.1371/journal.pone.0211854.g001

Fig 2. Illustration of warping in the region of the lactate signal. Left: a portion of a 900 MHz spectrum before

warping. Right: a portion of a 900 MHz spectrum after warping.

https://doi.org/10.1371/journal.pone.0211854.g002
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2.3 Spiking experiments

Spiking experiments [6] were conducted to determine the chemical shift positions of the blood

plasma metabolites. Spiked spectra were acquired on the 400 MHz and 900 MHz spectrome-

ters for 37 metabolites: alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate,

glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threo-

nine, tryptophan, tyrosine, valine, glucose, myo-inositol, acetate, acetoacetate, α-ketoglutarate,

β-hydroxybutyrate, citrate, lactate, pyruvate, succinate, creatine, creatinine, acetone, betaine,

choline, glycerol, and methanol.

2.4 Spectral binning for NMR signal extraction

Spectral binning involves partitioning the 1H-NMR spectra into regions along the chemical

shift axis. The resonance peaks encompassed by each region are integrated. The resulting ISRs

constitute a set of features that represent the NMR signal. Reliable information on the chemical

shift of metabolite peaks is essential for the identification of biologically meaningful spectral

regions. Using the chemical shift information acquired through spiking experiments, the

400 MHz spectra were subdivided into 110 integration regions of varying widths excluding the

water region and the TSP region (see Table A in S1 File) [6]. Similarly, the manually pre-

processed 900 MHz spectra were partitioned into 105 integration regions [5] and the

PepsNMR automatically pre-processed 900 MHz spectra were partitioned into 103 integration

regions (see Table A in S1 File). Further details on the standard protocol for extracting features

from NMR data using spectral binning can be found in Louis et al., (2015) [6].

2.5 BATMAN

The Bayesian state-of-the-art spectral deconvolution technique, BATMAN, was developed by

Astle et al., (2012) [7]. BATMAN resolves the resonance peaks of NMR spectra in order to esti-

mate the relative concentrations of a pre-specified set of metabolites. BATMAN is a two-com-

ponent model. The first component models the metabolic signal (i.e., the signal assigned to

specific metabolites) while the second component models the residual signal. BATMAN

exploits extensive prior information on the characteristic spectral signatures of each metabolite

and combines this information with the observed intensities to model the metabolic signal.

The second component uses wavelets to capture the residual signal. The residual signal

Fig 3. Illustration of a portion of a 900 MHz PepsNMR automatically pre-processed spectrum and a 900 MHz

manually pre-processed spectrum.

https://doi.org/10.1371/journal.pone.0211854.g003
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includes the signal that arises from other uncatalogued chemical constituents such as lipids.

When the metabolic signal has been properly extracted, the wavelet signal can be divided into

carefully selected broad integration regions to approximate lipid concentrations. In this way, a

set of relative metabolite concentrations and lipid features can be obtained. In addition to pro-

viding point estimates of the metabolic concentrations per spectrum, BATMAN also provides

95% credible intervals for each estimate which can be used to assess the degree of uncertainty

in the estimated concentrations.

BATMAN was implemented by using the R statistical software package batman, as

detailed in the protocol by Hao et al., (2014) [8]. In this section, the implementation of the

model is described and some of the steps that are crucial for improving the extraction of the

metabolic signal are summarized.

The standard BATMAN inputs are the NMR spectroscopy data (NMRdata.txt), the

parameter options file (batmanOptions.txt), the library of characteristic metabolic signatures

(multi_data.csv or multi_data_user.csv), and a list of the metabolites of interest (metabolites-

List.csv).

2.5.1 BATMAN options file. The parameter settings (batmanOptions.txt) used for the

400 MHz and the 900 MHz analysis are shown in Table B in S1 File.

2.5.2 Template file. Prior information about the spectral signatures of each metabolite is

specified in the default BATMAN template file multi_data.csv. The default template file can be

modified by constructing the template file multi_data_user.csv. The fit of the BATMAN

model can be improved considerably by providing prior information that more accurately

describes the observed peaks. Each resonance is described in the BATMAN template file in

terms of its chemical shift position (in ppm), multiplicity (i.e., the J-coupling pattern, i.e.,

whether the signal appears as a singlet, doublet, triplet, or double doublet etc.), J-coupling con-

stants, and the relative intensities of the peaks. Multiplets with well-defined coupling patterns

and known coupling constants, that exhibit second order effects (i.e., roofingnleaning effects),

can be modeled empirically by specifying the observed intensity ratios of the peaks (see the

note on empirical multiplets below). Complex multiplets (e.g., multiplets that are not well-

defined or those that exhibit higher order coupling patterns), for which elucidation would

require a substantial amount of input from a spectroscopist, may be modeled as raster multi-

plets by providing a corresponding section of a pure compound spectrum (see the note on ras-

ter multiplets below).

Given the complexity of NMR resonances, ill-defined chemical shift positions is the recipe

for a poor fit. Prior information about the peak locations was determined by using the splineFit

routine [8] implemented in Matlab and the details on the 1H-NMR chemical shift locations of

plasma metabolites reported by Louis et al., (2015) [6].

2.5.3 A note on empirical multiplets. For the user-defined empirical multiplets, the accu-

rate specification of relative intensities is subject to the availability of pure compound spectra

(i.e., NMR spectra obtained by analyzing a sample containing only the target metabolite). For

the multiplets in regions of no overlap, baseline-corrected spiked spectra were used as a substi-

tute for the pure compound spectra. To compute the relative intensities, the number of reso-

nating protons should be taken into account. For a particular multiplet, a simple numeric

solution is to take the intensities of the peaks observed in the pure compound spectra and to

normalize them to sum to the actual number of protons. That is, the relative intensity of a mul-

tiplet’s ith peak is computed using the following formula:

hi ¼ p�
yiP
iyi

ð1Þ
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where yi is the observed intensity based on pure compound spectra and p is the number of pro-

tons associated with the multiplet.

Empirical templates can be defined to model multiplets that exhibit roofingnleaning effects.

Fig 4 shows the leaning effect of two doublets of citrate. Each doublet was produced by two

resonating protons. Using the equation above, the relative intensity of the peak at 2.586 ppm is

h1 = 1.2 and the relative intensity of the peak at 2.547 ppm is h2 = 0.8.

In addition to the relative intensities, the offset of the peaks should be specified (in Hz). Off-

sets are specified from a point of origin. For convenience, the center of the multiplet can be

taken as the origin. The offsets can be determined from pure compound spectra. Alternatively,

the J-coupling information of 1H-NMR plasma metabolites reported by Louis et al., (2015) [6]

and public databases like the Human Metabolome Database (HMDB) can be used. This is

depicted in Fig 5, where the offset of the leftmost peak from the center of the double doublet of

aspartate is half of the sum of the two J-coupling constants.

Fig 4. Illustration of a 400 MHz spectrum with two doublets of citrate at 2.717 and 2.566 ppm. Each doublet arises

from a CH2-group and thus from 2 protons.

https://doi.org/10.1371/journal.pone.0211854.g004

Fig 5. A portion of a 400 MHz spectrum illustrating the identification of peak offsets for the double doublet of

aspartate at 2.702 ppm. Coupling constants J1 and J2 can be used to obtain the location of the four peaks from the

center of the multiplet.

https://doi.org/10.1371/journal.pone.0211854.g005
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2.5.4 A note on raster multiplets. Raster multiplets can be modeled from pure com-

pound spectra. Due to the lack of pure compound spectra, spiked spectra were used for the

multiplets that are found in regions where there is no significant overlap with other metabo-

lites. Examples of raster multiplets for the 400 MHz and 900 MHz spectra are shown in Fig 6.

2.5.5 Target metabolites. The BATMAN model was applied to estimate the relative

concentrations of the following metabolites in the 400 MHz spectra: alanine, arginine, aspara-

gine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine, leucine, lysine,

methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, α-D-gluco-

pyranose, β-D-glucopyranose, myo-inositol, acetate, acetoacetate, α-ketoglutarate, β-hydroxy-

butyrate, citrate, lactate, pyruvate, succinate, creatine, and creatinine. In the 900 MHz spectra,

betaine and choline were added to the above list of metabolites. However, for consistency

between the 400 MHz and 900 MHz analysis, Betaine and Choline were not used as classifica-

tion features. Louis et al., (2015) [6] and Louis et al., (2017) [5] specify the chemical shifts of

these metabolites.

2.5.6 Verifying the goodness of the BATMAN fit. The goodness of fit of the modeled

metabolic signal can be checked by using the built-in tools of the R batman package. Hao

et al., (2014) [8] provided straightforward guidance on the use of the batman diagnostic

plots. However, it is worthwhile to note that comparing the integrated bin intensities with the

BATMAN metabolite fit for multiplets in crowded-peak regions is less informative (i.e., it is

not a solution for evaluating the BATMAN fit or for identifying problem spectra). To illustrate

this point, consider Fig 7 showing the diagnostic scatterplot for alanine. While the integration

values are aligned for the doublet at 1.509 ppm, they are somewhat scattered for the quadruplet

at 3.810 ppm. This is primarily due to the glucose resonances and signals from other metabo-

lites that lie in the vicinity of the quadruplet and which contribute to the integrated bin inten-

sity (see Fig B in S1 File).

2.5.7 Post-processing of spectral fits. Once the metabolic signal has been correctly

assigned, the residual signal captured by the wavelet component of the BATMAN model can

be used to estimate the lipid concentrations. Towards this aim, integration regions that encom-

pass lipid resonances were specified. Lipid resonances typically appear as broad peaks in NMR

spectra. In general, the lipid integration regions selected for the BATMAN analysis are broader

than those used for spectral binning (see Fig 8 and Table C in S1 File). The defined integration

regions aim to capture the following broad lipid resonances: CH3–(CH2)n–in the fatty acid

Fig 6. Illustration of raster multiplets. Left: 400 MHz raster multiplet for proline. Right: 900 MHz raster multiplet for

glutamine.

https://doi.org/10.1371/journal.pone.0211854.g006
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Fig 8. Illustration of the BATMAN wavelet-fit showing lipid integration regions for a 400 MHz (top) and 900

MHz (bottom) spectrum. The BATMAN integration regions that capture the broad lipid resonances are delimited by

blue solid lines. The narrower spectral binning integration regions (delimited by red dashed lines) capture lipid signals,

but not necessarily exclusively.

https://doi.org/10.1371/journal.pone.0211854.g008

Fig 7. Batman diagnostic plot for alanine. Each number corresponds to a specific spectrum.

https://doi.org/10.1371/journal.pone.0211854.g007

Impact of the method of extracting metabolic signal from 1H-NMR data on the classification of samples

PLOS ONE | https://doi.org/10.1371/journal.pone.0211854 February 6, 2019 10 / 17

https://doi.org/10.1371/journal.pone.0211854.g008
https://doi.org/10.1371/journal.pone.0211854.g007
https://doi.org/10.1371/journal.pone.0211854


www.manaraa.com

chain (FAC), –CH3–(CH2)n–in the FAC (captured using two integration regions in the

900 MHz analysis), –CH2–CH2–C = O or –CH2–CH2–CH = CH–in the FAC, –CH2–

CH = CH–in the FAC and CH3 in N-acetylated glycoproteins (NAG), –CH2–C = O or –CH2–

CH = CH–in FAC, = CH–CH2–CH = in FAC, lysyl, and –CH = CH–in FAC. In this way, a set

of lipid-specific features were obtained in addition to the relative metabolic concentrations.

This approach only works when the metabolic signal has been sufficiently extracted. Should

this not be the case, the residual signal will be contaminated by other metabolites resonating in

the area.

2.6 Classification

Spectral binning and spectral deconvolution by BATMAN were applied to the manually pre-

processed (mp) 400 MHz and the PepsNMR automatically pre-processed (ap) 900 MHz
1H-NMR spectra of lung cancer patients and control subjects. Spectral binning was also

applied to the manually pre-processed 900 MHz 1H-NMR spectra. As a result, the following

five sets of predictors were obtained:

1. Spectral binning ISRs for 110 regions based on the mp 400 MHz spectra.

2. Relative concentrations obtained using BATMAN for 33 metabolites and 9 lipid features

based on the mp 400 MHz spectra.

3. Spectral binning ISRs for 103 regions based on the ap 900 MHz spectra.

4. Relative concentrations obtained using BATMAN for 33 metabolites and 10 lipid features

based on the ap 900 MHz spectra.

5. Spectral binning ISRs for 105 regions based on the mp 900 MHz spectra.

Classifiers were built by using each set of predictors. The predictive performance of the classi-

fiers was assessed by using a three-fold cross-validation (CV) scheme (see Fig 9). CV works by

dividing the dataset in two parts, a training set and a test set. In K-fold CV, the data are split into

K roughly equal parts. In the kth iteration, where k = 1, . . ., K, the kth part of the data forms the

test set and the remaining K − 1 parts form the training set. Thus, in three-fold CV, one-third of

the data forms the test set and the remaining two-thirds of the data (i.e., the training set) are

used to build the classifier. At each iteration, the performance of the classifier is evaluated in

terms of the proportion of misclassifications and the sensitivity and specificity of the classifier

when applied to the test set. Since the splitting is not uniquely determined, [12] the cross valida-

tion procedure was repeated 333 times. The overall performance is based on the mean classifica-

tion error rate, the mean sensitivity, and the mean specificity of the 999 classifiers.

For the classification analysis involving the binning features, variable selection was based

on the discriminative power of the individual bins between the two conditions. This was

assessed by using the limma-based moderated t-statistic [13], as indicated by the asterisk in

Fig 9. The classification analysis involving the BATMAN estimated features proceeded using

the following three subsets of the features: (1) all the BATMAN-estimated relative metabolite

concentrations, (2) all the relative lipid concentrations, and (3) all the BATMAN-estimated rel-

ative metabolic concentrations together with all the relative lipid concentrations.

Five procedures that are appropriate for the analysis of large, complex datasets were used to

build the classifiers, namely elastic net, lasso, orthogonal partial least squares-discriminant

analysis (OPLS-DA), support vector machines (SVMs), and random forests (RF). A brief

description of each method is provided in S1 File and the reader is referred to Hastie et al.,

(2009) [14] and Bylesjö et al., (2006) [15] for further details.
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Although the limma-based moderated t-statistic was not used to build the BATMAN fea-

ture-based classifiers, the test was applied (in 333 iterations of three-fold cross-validation) as a

univariate approach to identify the top 15 variables of each of the five sets of predictors. These

variables were identified to check whether there were any similarities in the most discrimina-

tive variables selected for each classification task.

The statistical analysis was conducted by using the R statistical software (version 3.2.3, R

Development Core Team, 2015). Classification methods were implemented by using the

default options of the R Bioconductor package CMA [12].

3 Results

For the BATMAN analysis, many multiplets were modelled best by using either empirical mul-

tiplets or raster multiplets. However, as stated in [8], while this does not necessarily result in a

perfect fit, it does allow the user to capture metabolites, which may otherwise not be possible.

Despite extensive adjustments of the BATMAN template file, we did not achieve a perfect

fit for all the multiplets across all the spectra (see Figs C and D in S1 File). Due to this, the

selected lipid regions sometimes contained residual metabolite peaks (see Figs C, D, E, and F

in S1 File).

Fig 10 illustrates the fit of the BATMAN model in the region extending from 2.99 to

3.11 ppm for both the 400 MHz and 900 MHz spectrum of a particular plasma sample. This

Fig 9. The three-fold cross-validation procedure.

https://doi.org/10.1371/journal.pone.0211854.g009
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region contains resonances from creatine (singlet), creatinine (singlet), lysine (triplet), and

tyrosine (double doublet), as well as a part of the lipid = CH–CH2–CH = resonance. The reso-

nances are more distinguishable in the 900 MHz spectrum compared to the 400 MHz spec-

trum. For the 400 MHz spectrum, the four integration regions from left to right aim to capture

the signal corresponding to (1) cysteine, lysine, and tyrosine; (2) cysteine, lysine, tyrosine, and

creatinine; (3) cysteine, lysine, tyrosine, creatinine, and creatine; and (4) cysteine, lysine, tyro-

sine, and α-ketoglutarate. For the 900 MHz spectrum, the four integration regions from left to

right, beginning at 3.0921 ppm, correspond to (1) tyrosine, (2) creatinine, (3) creatine, and (4)

lysine and α-ketoglutarate.

Fig 10. BATMAN fit in the region extending from 2.99 to 3.11 ppm for the 400 MHz spectrum (top) and the

900 MHz spectrum (bottom) of a plasma sample. The original spectrum is shown in yellow. The two components of

the BATMAN model fit, that is, the component modeling the metabolic signal (metabolites fit) and the component

capturing the residual signal (wavelet fit) are indicated by blue and red curves, respectively. The fit sum which is the

sum of the metabolite fit and the wavelet fit is shown in black. The shaded regions show the resonances from creatine

(blue), creatinine (yellow), lysine (pink), and tyrosine (green) that are captured by the metabolite fit. The broad

lipid = CH–CH2–CH = resonance in the region is captured by the wavelet fit. Binning integration region limits for the

region are delimited by grey dotted lines.

https://doi.org/10.1371/journal.pone.0211854.g010
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The top 15 discriminative features, based on the univariate analysis, of each set of predictors

are listed in Tables D to H in S1 File.

Comprehensive results of the various classification methods (elastic net, lasso, OPLS-DA,

SVMs, and RF) are provided in Figs G to I and Table I in S1 File. Only the elastic net classifiers

are further discussed as they proved to be one of the better performing classifiers (see Fig J in

S1 File). Table 1 presents the mean cross validated classification error, sensitivity, and specific-

ity of the 400 MHz and 900 MHz classifiers. The 400 MHz classification results indicate that

the ISRs (misclassification rate: 0.126, sensitivity: 0.844, specificity: 0.904) had greater predic-

tive power than the relative metabolic and lipid concentrations obtained by using BATMAN

(classification error: 0.197, sensitivity: 0.775, specificity: 0.829). For the 900 MHz classification

analysis, the relative metabolic concentrations estimated by BATMAN (misclassification rate:

0.105, sensitivity: 0.884, specificity: 0.906) had greater predictive power than the ISRs of the

900 MHz spectral bins (classification error rate: 0.169 (mp), 0.197 (ap); sensitivity: 0.804 (mp),

0.779 (ap); specificity: 0.857 (mp), 0.826 (ap)). Note that for the PepsNMR automatically pre-

processed 900 MHz spectra, an additional spectral alignment step was carried out to improve

the homogeneity of the bins (in terms of the signal captured) across spectra.

Histograms of the probability of lung cancer for the different sets of features are presented

in Fig 11. Each histogram is based on the classifiers developed using the subset of features indi-

cated by the letter a in Table 1. Assuming that a probability greater than 0.5 implies the pres-

ence of lung cancer, the ISRs of the 400 MHz spectral bins and the 900 MHz relative metabolic

Table 1. Elastic net classification results (standard errors in parentheses).

Features Classification error Sensitivity Specificity

400 MHz (manually pre-processed data)

Binning: top integrated spectral regionsa 0.126 (0.002) 0.843 (0.003) 0.904 (0.002)

BATMAN: all metabolites and lipidsa 0.197 (0.002) 0.775 (0.003) 0.829 (0.002)

900 MHz (PepsNMR automatically pre-processed data)

Binning: top integrated spectral regionsa 0.197 (0.002) 0.779 (0.003) 0.826 (0.003)

BATMAN: all metabolitesa 0.105 (0.001) 0.884 (0.002) 0.906 (0.002)

900 MHz (manually pre-processed data)b

Binning: top integrated spectral regions 0.169 (0.002) 0.804 (0.003) 0.857 (0.002)

a Features utilized in Fig 11.
b The 900 MHz manually pre-processed spectra were not of sufficient quality to fit the BATMAN model.

https://doi.org/10.1371/journal.pone.0211854.t001

Fig 11. Histograms of the probability of lung cancer based on 333 iterations of three-fold cross-validation. Blue corresponds to the control samples

and red represents the lung cancer samples.

https://doi.org/10.1371/journal.pone.0211854.g011
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concentrations estimated by BATMAN produced the best classifiers in terms of lowest mean

classification error and highest sensitivity and specificity.

4 Discussion and conclusions

In this study, spectral binning and spectral deconvolution using BATMAN were applied in

order to extract metabolic signal from 1H-NMR spectra of different spectral resolutions

(400 MHz and 900 MHz spectra).

4.1 Implementation

Both spectral binning and spectral deconvolution using BATMAN require expert knowledge

of the characteristic spectral signatures (i.e., the peak locations and coupling patterns) of differ-

ent metabolites. For spectral binning, this insight is necessary to select meaningful integration

regions. For spectral deconvolution using BATMAN, this information is required to accurately

specify and refine the prior information on each multiplet of interest.

Despite BATMAN’s description as an automated metabolite analyzer, an extensive amount

of time was spent on developing and fine-tuning the template file in order to improve signal

extraction. Although metabolites have characteristic resonances, experimental parameters and

pre-processing steps influence the resultant chemical shift positions, identifiable coupling pat-

terns, and relative peak intensities. Note that a single template file is specified for a large num-

ber of spectra which exhibit between-spectrum variation in peak shift and peak definition.

Thus, template adjustments made to improve the fit of some spectra or peaks may have an

opposite effect on others. Updating the template file is a repetitious task which is extremely

time-consuming, especially for crowded spectral regions, but it is essential. Once the template

database is developed, the process is automated.

Though selecting the integration regions for spectral binning is a manual task, spectral bin-

ning is a relatively fast and straightforward method for 1H-NMR signal extraction.

The magnetic field strength of the NMR spectrometer influences the resolution of the meta-

bolic peaks. In higher resolution spectra, peaks appear with greater definition, exhibit fewer

higher-order effects, and show less overlap. This is beneficial for both spectral binning and

spectral deconvolution using the BATMAN model. Fewer overlapping regions imply a greater

one-to-one mapping between spectral bins and metabolites [5] and the increased signal-to-

noise ratio in the higher resolution spectra is advantageous for metabolic signal extraction

using BATMAN (see Fig 10).

4.2 Classification and Clinical Relevance

An abundance of detail pertaining to biological functions is contained within the metabolome.

There is a strong desire to eventually utilize these data to make informed clinical decisions

about disease status, susceptibility, and progression. It is expected that metabolomics will be of

vital importance in reaching the goal of providing healthcare that is customized for individual

patients. Therefore, obtaining interpretable, reliable, and reproducible results is essential.

The variation in chemical shift locations across spectra is a challenge for spectral binning.

Therefore, the inclusion of a spectral alignment step in the pre-processing of NMR data is

important in order to obtain reliable and interpretable features. However, even with good

spectral alignment, overlapping peaks often prevent a one-to-one mapping between integra-

tion regions and metabolites. Integration regions, especially those of lower resolution spectra,

may contain signals from two or more metabolites in conjunction with an unidentified signal

(for illustration, see Tables D to H in S1 File). Thus, a drawback of the simplicity surrounding

spectral binning is the lack of biological interpretability of the resultant features. Nonetheless,
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for the 400 MHz analysis, the classifier based on the binning features performed better than

the one using BATMAN-estimated features.

Spectral deconvolution, particularly the BATMAN model, provides the means to obtain a

single concentration estimate for each metabolite of interest. The residual signal captured by

wavelets can be divided into integration regions in order to capture for instance, broad lipid

resonances. In the end, clinically relevant features are extracted from the 1H-NMR spectra.

The benefit obtained from the effort put into running BATMAN is biological interpretability.

In addition, although not the focus of this manuscript, the reliability of BATMAN estimated

relative concentrations can also be assessed by using the 95% credible intervals. For the

900 MHz spectra, the relative metabolic concentrations estimated by BATMAN excelled, pro-

ducing the best performing classifier in terms of mean misclassification error.
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